前面說到了哈夫曼樹的創(chuàng)建,那下面一個重要的環(huán)節(jié)就是哈夫曼樹的排序問題。但是由于排序的內(nèi)容是數(shù)據(jù)結(jié)構(gòu),因此形式上說,我們需要采用通用數(shù)據(jù)排序算法,這在我之前的博客里面已經(jīng)涉及到了(通用算法設(shè)計)。所以,我們所要做的就是編寫compare和swap兩個函數(shù)。通用冒泡代碼如下所示,
void bubble_sort(void* array[], int length, int (*compare)(void*, void*), void(*swap)(void**, void**))
{
int outer;
int inner;
for(outer = length -1; outer >0; outer --){
for(inner = 0; inner < outer; inner ++){
if(compare(array[inner], array[inner + 1]))
swap(&array[inner], &array[inner + 1]);
}
}
return;
}
compare和swap代碼如下所示,
int compare (void* a, void* b)
{
HUFFMAN_NODE* node1 = (HUFFMAN_NODE*)a;
HUFFMAN_NODE* node2 = (HUFFMAN_NODE*)b;
return node1->frequence > node2->frequence ? 1 : 0;
}
void swap(void** a, void** b)
{
HUFFMAN_NODE* median;
HUFFMAN_NODE** node1 = (HUFFMAN_NODE**)a;
HUFFMAN_NODE** node2 = (HUFFMAN_NODE**)b;
median = *node1;
*node1 = *node2;
*node2 = median;
}
有了創(chuàng)建函數(shù)和排序函數(shù),那么哈夫曼樹就可以創(chuàng)建了,
HUFFMAN_NODE* create_huffman_tree(HUFFMAN_NODE* huffmanNode[], int length)
{
HUFFMAN_NODE* head = NULL;
if(NULL == huffmanNode || length <= 1)
return NULL;
while(length > 1){
bubble_sort((void**)huffmanNode, length, compare, swap);
head = create_new_node('\0', huffmanNode[0]->frequence + huffmanNode[1]->frequence);
assert(NULL != head);
head->left = huffmanNode[0];
head->right = huffmanNode[1];
huffmanNode[0]->parent = head;
huffmanNode[0]->symbol = 1;
huffmanNode[1]->parent = head;
huffmanNode[1]->symbol = 0;
memmove(&huffmanNode[0], &huffmanNode[2], sizeof(HUFFMAN_NODE*) * (length -2));
huffmanNode[length -2] = head;
length --;
}
return head;
}
上面的代碼完整了寫出了huffman樹的創(chuàng)建過程,那么我們怎么知道符號的編碼是多少呢?這其實不難,因為根節(jié)點都知道了,我們只要按照自下而上的順序遍歷節(jié)點就可以打印出編碼,只不過編碼是逆序的而已,
void print_code_for_str(HUFFMAN_NODE* pNode, HUFFMAN_NODE* head)
{
if(NULL == pNode || NULL == head)
return;
while(head != pNode){
printf("%d", pNode->symbol);
pNode = pNode->parent;
}
return;
}
如果對代碼本身還有懷疑,可以編譯一個測試用例驗證一下,
void test()
{
HUFFMAN_NODE* node1 = NULL;
HUFFMAN_NODE* node2 = NULL;
HUFFMAN_NODE* node3 = NULL;
HUFFMAN_NODE* node4 = NULL;
HUFFMAN_NODE* test[] = {node1 = create_new_node('a', 0.1),
node2 = create_new_node('b', 0.2),
node3 = create_new_node('c', 0.3),
node4 = create_new_node('d', 0.4),
};
HUFFMAN_NODE* head = create_huffman_tree(test, sizeof(test)/sizeof(HUFFMAN_NODE*));
print_code_for_str(node1, head);
print_code_for_str(node2, head);
print_code_for_str(node3, head);
print_code_for_str(node4, head);
}
總結(jié):
(1)哈夫曼樹不復(fù)雜,如果手算可以成功,那么編程應(yīng)該也沒有什么問題
(2)復(fù)雜算法都是由小算法搭積木而成的,朋友們應(yīng)該在基本算法上打下堅實的基礎(chǔ)
(3)算法注意復(fù)用,這里就用到了原來講到的通用算法內(nèi)容